An Analytical Approach for the Green’s Functions of Biharmonic Problems with Circular and Annular Domains
نویسندگان
چکیده
In this paper, an analytical approach for deriving the Green’s function of circular and annular plate was presented. Null-field integral equations were employed to solve the plate problems while kernel functions were expanded to degenerate kernels. The unknown boundary data of the displacement, slope, normal moment and effective shear force were expressed in terms of Fourier series. It was noticed that all the improper integrals were avoided when the degenerate kernels were used. After determining the unknown Fourier coefficients, the displacement, slope, normal moment and effective shear force of the plate could be obtained by using the boundary integral equations. The present approach was seen as an “analytical” approach for a series solution. Finally, several analytical solutions were obtained. To see the validity of the present method, FEM solutions using ABAQUS were compared well with our analytical solutions. The displacement, radial moment and shear variations of radial and angular positions were presented.
منابع مشابه
First Principles Derivation of Displacement and Stress Function for Three-Dimensional Elastostatic Problems, and Application to the Flexural Analysis of Thick Circular Plates
In this study, stress and displacement functions of the three-dimensional theory of elasticity for homogeneous isotropic bodies are derived from first principles from the differential equations of equilibrium, the generalized stress – strain laws and the geometric relations of strain and displacement. It is found that the stress and displacement functions must be biharmonic functions. The deriv...
متن کاملAnalytical and Numerical Modelling of the Axisymmetric Bending of Circular Sandwich Plates with the Nonlinear Elastic Core Material
Herein paper compares the analytical model with the FEM based numerical model of the axisymmetric bending of circular sandwich plates. Also, the paper describes equations of the circular symmetrical sandwich plates bending with isotropic face sheets and the nonlinear elastic core material. The method of constructing an analytical solution of nonlinear differential equations has been described. ...
متن کاملThree-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials
By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-p...
متن کاملAnalytical Solution for a Two-Layer Transversely Isotropic Half-Space Affected by an Arbitrary Shape Dynamic Surface Load
The dynamic response of a transversely isotropic, linearly elastic layer bonded to the surface of a half-space of a different transversely isotropic material under arbitrary shape surface loads is considered. With the help of displacements and stresses Green’s functions, an analytical formulation is presented for the determination of the displacements and stresses at any point in both surface l...
متن کاملThermo-Mechanical Vibration Analysis of FG Circular and Annular Nanoplate Based on the Visco-Pasternak Foundation
In this study, the vibration behavior of functional graded (FG) circular and annular nanoplate embedded in a Visco-Pasternak foundation and coupled with temperature change is studied. The effect of in-plane pre-load and temperature change are investigated on the vibration frequencies of FG circular and annular nanoplate. To obtain the vibration frequencies of the FG circular and annular nanopla...
متن کامل